Extensions 1→N→G→Q→1 with N=C23.18D14 and Q=C2

Direct product G=N×Q with N=C23.18D14 and Q=C2
dρLabelID
C2×C23.18D14224C2xC2^3.18D14448,1249

Semidirect products G=N:Q with N=C23.18D14 and Q=C2
extensionφ:Q→Out NdρLabelID
C23.18D141C2 = C23.5D28φ: C2/C1C2 ⊆ Out C23.18D141128-C2^3.18D14:1C2448,276
C23.18D142C2 = C24.56D14φ: C2/C1C2 ⊆ Out C23.18D14112C2^3.18D14:2C2448,1039
C23.18D143C2 = C24.32D14φ: C2/C1C2 ⊆ Out C23.18D14112C2^3.18D14:3C2448,1040
C23.18D144C2 = C242D14φ: C2/C1C2 ⊆ Out C23.18D14112C2^3.18D14:4C2448,1042
C23.18D145C2 = C24.35D14φ: C2/C1C2 ⊆ Out C23.18D14112C2^3.18D14:5C2448,1046
C23.18D146C2 = C24.36D14φ: C2/C1C2 ⊆ Out C23.18D14112C2^3.18D14:6C2448,1048
C23.18D147C2 = C4⋊C4.178D14φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14:7C2448,1053
C23.18D148C2 = C14.712- 1+4φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14:8C2448,1056
C23.18D149C2 = C14.402+ 1+4φ: C2/C1C2 ⊆ Out C23.18D14112C2^3.18D14:9C2448,1063
C23.18D1410C2 = C14.732- 1+4φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14:10C2448,1064
C23.18D1411C2 = C14.432+ 1+4φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14:11C2448,1067
C23.18D1412C2 = C14.442+ 1+4φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14:12C2448,1068
C23.18D1413C2 = C14.792- 1+4φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14:13C2448,1101
C23.18D1414C2 = D7×C22.D4φ: C2/C1C2 ⊆ Out C23.18D14112C2^3.18D14:14C2448,1105
C23.18D1415C2 = C14.832- 1+4φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14:15C2448,1113
C23.18D1416C2 = C14.672+ 1+4φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14:16C2448,1117
C23.18D1417C2 = 2+ 1+4.2D7φ: C2/C1C2 ⊆ Out C23.18D141128-C2^3.18D14:17C2448,777
C23.18D1418C2 = C4216D14φ: C2/C1C2 ⊆ Out C23.18D14112C2^3.18D14:18C2448,1009
C23.18D1419C2 = C42.118D14φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14:19C2448,1017
C23.18D1420C2 = C14.342+ 1+4φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14:20C2448,1054
C23.18D1421C2 = C14.352+ 1+4φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14:21C2448,1055
C23.18D1422C2 = C14.422+ 1+4φ: C2/C1C2 ⊆ Out C23.18D14112C2^3.18D14:22C2448,1066
C23.18D1423C2 = C14.492+ 1+4φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14:23C2448,1074
C23.18D1424C2 = C42.137D14φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14:24C2448,1122
C23.18D1425C2 = C4221D14φ: C2/C1C2 ⊆ Out C23.18D14112C2^3.18D14:25C2448,1132
C23.18D1426C2 = C42.166D14φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14:26C2448,1166
C23.18D1427C2 = C42.168D14φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14:27C2448,1172
C23.18D1428C2 = C4228D14φ: C2/C1C2 ⊆ Out C23.18D14112C2^3.18D14:28C2448,1173
C23.18D1429C2 = C247D14φ: C2/C1C2 ⊆ Out C23.18D14112C2^3.18D14:29C2448,1257
C23.18D1430C2 = C24.42D14φ: C2/C1C2 ⊆ Out C23.18D14112C2^3.18D14:30C2448,1259
C23.18D1431C2 = C14.1042- 1+4φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14:31C2448,1277
C23.18D1432C2 = C14.1052- 1+4φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14:32C2448,1278
C23.18D1433C2 = C42.102D14φ: trivial image224C2^3.18D14:33C2448,991
C23.18D1434C2 = (C2×C28)⋊15D4φ: trivial image112C2^3.18D14:34C2448,1281

Non-split extensions G=N.Q with N=C23.18D14 and Q=C2
extensionφ:Q→Out NdρLabelID
C23.18D14.1C2 = (C2×C28).D4φ: C2/C1C2 ⊆ Out C23.18D141128-C2^3.18D14.1C2448,29
C23.18D14.2C2 = C14.802- 1+4φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14.2C2448,1103
C23.18D14.3C2 = C14.602+ 1+4φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14.3C2448,1104
C23.18D14.4C2 = C23.4D28φ: C2/C1C2 ⊆ Out C23.18D141128-C2^3.18D14.4C2448,33
C23.18D14.5C2 = C42.105D14φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14.5C2448,994
C23.18D14.6C2 = C42.140D14φ: C2/C1C2 ⊆ Out C23.18D14224C2^3.18D14.6C2448,1125

׿
×
𝔽